Автономная некоммерческая организация дополнительного профессионального образования «Институт бизнеса и информационных технологий»

Принята на заседании педагогического совета от \ll 24» июня 2024 г. Протокол № П-03/24

Утверждаю: Директор
_____ О.В. Обухов
«24» июня 2024 г.

Дополнительная общеобразовательная общеразвивающая программа естественнонаучной направленности

«ДЕТИ-ФИЗИКИ»

Возраст обучающихся: 12–17 лет Срок реализации: 4 года (224 часа)

Автор-составитель: Некрасов Игорь Александрович, доктор наук, профессор

1. Комплекс основных характеристик 1.1.Пояснительная записка

Настоящая дополнительная общеобразовательная общеразвивающая программа разработана с учетом Федерального Закона Российской Федерации от 29.12.2012 г. №273 «Об образовании в Российской Федерации»; Концепции развития дополнительного образования детей до 2030 года, утвержденной распоряжением Правительства Российской Федерации от 31.03.2022 №678-р; Приказа Министерства просвещения Российской Федерации от 27.07.2022 г. № 629 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»; Методических рекомендаций по проектированию общеразвивающих программ (включая разноуровневые программы), направленными письмом Министерства образования и науки Российской Федерации от 18.11.2015 № 09-3242; Методических организации независимой оценки качества дополнительного рекомендаций по образования детей, направленными письмом Министерства образования и науки Российской Федерации от 28.04.2017 № ВК-1232/09; Постановления государственного санитарного врача РФ от 28.09.2020г. №28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодежи»; СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»; Устава АНО ДПО «Институт бизнеса и информационных технологий»; Локальных нормативных актов АНО ДПО «Институт бизнеса и информационных технологий».

Направленность программы – естественнонаучная.

Дополнительная общеобразовательная общеразвивающая программа «Детифизики», естественнонаучной направленности, ориентирована на развитие интереса детей к углубленному изучению физики, математики, экспериментальной деятельности.

Актуальность программы. Актуальность программы проявляется в том, что она направлена на расширение и углубление теоретических и практических знаний и представлений учащихся о физике как науке. Программа также способствует мотивации к изучению физики и формированию навыков исследовательского характера, воспитанию культуры математического и физического мышления и естественнонаучного мировоззрения.

Физические знания имеют большое значение в образовательном процессе, поскольку они определяют роль физики в современном обществе и влияют на развитие научнотехнического прогресса. Социальные и экономические факторы нашего быстро меняющегося мира требуют, чтобы сегодняшние школьники обладали комплексными компетенциями. Формирование этих компетенций основывается на опыте учащихся и Наивысший уровень активности — творческий зависит от их активности. подразумевает стремление учеников К глубокому осмыслению знаний самостоятельному решению задач. Именно деятельностный подход позволяет подготовить людей, способных адаптироваться к различным жизненным ситуациям, обладающих не только набором формул и фактов, но и системными знаниями и навыками критического анализа.

Отличительные особенности программы заключаются в ее содержании. Программа направлена на более глубокое изучение физики и математики, в сравнении со школьной программой. Программа охватывает детальную проработку внутренней логики физики и математики, алгоритмов решения математических и физических задач, а также детальную проработку алгоритмов постановки и проведения физических экспериментов с последующим теоретическим анализом.

Решение учебных физических задач — ведущий метод обучения физике. С его помощью передаются знания о конкретных объектах и явлениях, создаются и решаются

проблемные ситуации, формируются практические и интеллектуальные навыки, передаются знания об истории науки и техники, развиваются целеустремлённость, настойчивость, аккуратность, внимательность, дисциплинированность, эстетические чувства и творческие способности. В условиях ускоренного научно-технического прогресса важно уметь ставить и решать задачи науки, техники и повседневной жизни.

Программа носит практико-ориентированный характер. Она создана для ознакомления детей с основами физики через опытно-экспериментальную деятельность. Постановка и выполнение физических экспериментов в рамках реализации программы проводится на базе действующих научных лабораторий Института электрофизики УрО РАН.

Программа носит профориентационный характер. Обучающиеся дополнительно во время внеурочной деятельности посещают экскурсии на производственные и научные организации Екатеринбурга в течение учебного года с целью ознакомления с деятельностью предприятий, также популяризации научного и инженерно-технического мировоззрения, необходимых для трудоустройства в будущем на высокотехнологичных предприятиях г. Екатеринбурга.

Адресат программы. Дополнительная общеобразовательная общеразвивающая программа «Дети-физики» разработана для подростков от 12-и до 17-и лет (учащихся 7-10 классов).

Содержание программы учитывает возрастные и психологические особенности подростков от 12-и до 17-и лет, которые определяют выбор форм проведения занятий с обучающимися.

Для подростков 12–14 лет к значимым типам деятельности относится проектная деятельность: встреча замысла и результата как авторское действие подростка, проявление себя в общественно значимых ролях. Планирование содержания данной программы разворачивается от конечного результата, которого должен достичь подросток. Содержание программы обусловливает процесс получения итогового продукта в определённом цикле (один год). Содержание развития — это образовательный маршрут по подготовке подростка к самопрезентации.

Ведущая деятельность подростков 15-17 лет — учебно-профессиональная. Организация образования сводится к подготовке и осуществлению профессиональной пробы в комплексном варианте: проживание инженерной деятельности. Содержание программы включает последовательное осуществление различных видов деятельности: выдвижение идеи; проявление продуктивного мышления, исследование, эксперимент, обобщение, финальный проект. Итоговый результат носит опережающий характер, а учебные действия обусловлены изобретательностью.

Группы формируются по возрастам, соответствующим учебным классам в школах 7, 8, 9, 10 классы. В зависимости от уровня знаний возможно комплектование групп учащихся 7-8 и 9-10 классов. Разделение обучающихся на группы по данному принципу обуславливается возрастными особенностями, а также уровнем начальных знаний.

Уровень программы. Программа предполагает базовый уровень освоения. Базовый уровень предполагает использование и реализацию таких форм организации материала, которые допускают освоение специализированных знаний и языка, гарантированно обеспечивают трансляцию общей и целостной картины в рамках содержательнотематического направления программы.

Объем и срок освоения программы. Объём программы – 224 часа.

Срок реализации программы 4 учебных года:

- 1 год обучения 56 часов,
- 2 год обучения 56 часов,
- 3 год обучения 56 часов,
- 4 год обучения 56 часов.

Режим занятий. Периодичность и продолжительность занятий: 2 раза в неделю, длительность одного занятия 60 минут.

Дата начала учебного года — 15 сентября. Дата окончания учебного года — 30 апреля. Продолжительность учебного года — 28 учебных недель.

Особенности организации образовательного процесса.

Традиционная модель реализации программы представляет собой линейную последовательность освоения содержания в течение одного или нескольких лет обучения в одной образовательной организации.

Форма обучения: очная.

Количество обучающихся в группе не более 15 человек. Занятия проводятся в групповой форме.

Виды занятий. Групповые занятия, работа в малых группах, теоретические, практические занятия.

Программой предусмотрены следующие виды деятельности обучающихся:

- освоение теоретического и практического материала на занятиях;
- проведение опытов, экспериментов;
- участие в экскурсиях;
- промежуточная аттестация в форме решения задач;
- самостоятельная практическая работа: выполнение домашних заданий, решение задач.

Формы подведения итогов реализации дополнительной общеразвивающей программы.

Реализация программы предполагает: самостоятельную работу, педагогическое наблюдение, проектную деятельность (в течение учебного периода).

1.2.Цель и задачи

Цель программы — создание условий для профориентации и развития естественнонаучного потенциала у обучающихся, через формирование у них научного мировоззрения и критического мышления, а также привитие интереса у подростков к физике как науке.

Задачи программы.

Образовательные (обучающие)

- расширить теоретические знания школьного курса по основным разделам физики;
- научить решать задачи различного уровня;
- экспериментально продемонстрировать основные законы физики в рамках лабораторных работ.

Образовательные задачи программы 1 года обучения:

- познакомить обучающихся с различными направлениями применения знаний физики;
- развивать навыки обучающихся, необходимые для исследований: наблюдение, измерение, эксперимент, мониторинг и др.;
- научить решать физические и математические задачи, используя алгоритм решения задач;
- познакомить с различными физическими приборами;
- научить ставить эксперименты и анализировать полученные результаты исследований.

Образовательные задачи программы 2 года обучения:

• формировать знания у учащихся о технических определениях и понятиях;

• формировать умения на практике пользоваться приборами, проводить измерения физических величин (определять цену деления, снимать показания, соблюдать правила техники безопасности).

Образовательные задачи программы 3 года обучения:

- повысить уровень знаний обучающихся, понимания сущности физических явлений и законов, взаимосвязи теории и эксперимента;
- совершенствовать умения на практике пользоваться приборами, проводить измерения физических величин.

Образовательные задачи программы 4 года обучения:

- расширить и углубить знания и умения обучающихся по основному курсу физики;
- способствовать использованию приобретенных знаний и умений для решения практических задач повседневной жизни и в последующей профессиональной деятельности;
- систематизировать теоретические знания и умения по решению различных задач различными методами.

Развивающие:

- ориентировать обучающихся в мире современных профессий, связанных с овладением и использованием естественнонаучных умений и навыков по физике;
- развивать познавательный интерес, внимание, память;
- совершенствовать логическое мышление, образное мышление;
- развивать коммуникативные навыки, умение взаимодействовать в группе.

Развивающие задачи программы 1 года обучения:

- способствовать развитию интереса и стремления изучать инженерные профессии;
- способствовать развитию памяти, внимания, логического мышления.
- способствовать развитию интереса к окружающему миру и его устройству.

Развивающие задачи программы 2 года обучения:

- развивать познавательные потребности и способности;
- развивать познавательную инициативу обучающихся, умение сравнивать вещи и явления, устанавливать простые связи и отношения между ними.

Развивающие задачи программы 3 года обучения:

- развивать творческие способностей, формирование у учащихся активности и самостоятельности, инициативы;
- развивать способности к самостоятельному наблюдению и анализу;
- развивать критическое мышление, умения исследовательской, творческой деятельности.

Развивающие задачи программы 4 года обучения:

- развивать творческий подход к поставленной задаче;
- развивать познавательные навыки обучающихся, умения самостоятельно конструировать свои знания, умения ориентироваться в информационном пространстве, анализировать полученную информацию, самостоятельно выдвигать гипотезы, умения применять решения (поиск направления и методов решения проблемы).

Воспитательные:

- акцентировать осознанность ценности знаний по физике;
- повышать информационную культуру как составляющую общей культуры современного человека;

• воспитывать сознательное отношение к выбору профессии технического направления.

Воспитательные задачи программы 1 года обучения:

- воспитывать интерес к изучению физики и математики как науки;
- воспитывать навыки сотрудничества обучающихся в процессе общения, коммуникации;
- воспитывать аккуратность при работе в лабораторных условиях, соблюдение техники безопасности.

Воспитательные задачи программы 2 года обучения:

- воспитывать информационную культуру как составляющую общей культуры современного человека;
- воспитывать самостоятельность при принятии решений и способности к аргументированному доказательству собственных гипотез.

Воспитательные задачи программы 3 года обучения:

- содействовать воспитанию самостоятельности, дисциплинированности, развитию терпения и упорства в достижении цели;
- способствовать профессиональному самоопределению в области инженерных профессий.

Воспитательные задачи программы 4 года обучения:

- воспитать интерес к практическому изучению профессий, связанных с физикой;
- воспитывать потребность в повышении уровня своей компетентности через практическую деятельность.

1.3.Планируемые результаты

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениям предвидеть возможные результаты своих действий;
- формирование умения определять понятия, использовать знаковосимволические средства, в том числе модели и схемы для решения задач;
- формирование умения планировать свои действия в соответствии с поставленной задачей и условиями её реализации.

Метапредметные результаты программы 1 года обучения:

• развитие умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения задач и экспериментов.

Метапредметные результаты программы 2 года обучения:

- развитие умения осознанного владения логическими действиями определения понятий, обобщения, управления аналогий;
- развитие умения устанавливать причинно-следственные связи.

Метапредметные результаты программы 3 года обучения:

- развитие умения соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией и в случае получения результата, отличного от ожидаемого;
- развитие умения формулировать, аргументировать и отстаивать своё мнение.

Метапредметные результаты программы 4 года обучения:

- развитие умения организовывать учебное сотрудничество и совместную деятельность с педагогом и сверстниками;
- развитие умения работать индивидуально и в группе: находить общее решение на основе согласования позиций.

Личностные результаты:

- развитие способности обучающихся к саморазвитию и профессиональному самоопределению;
- развитие убеждённости в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;
- развитие готовности к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- развитие способности ориентированности обучающихся в мире современных профессий, связанных с овладением и использованием естественнонаучных умений и навыков по физике.

Личностные результаты программы 1 года обучения:

- развитие творческого подхода к исследовательской деятельности;
- формирование учебно-познавательного интереса к новому учебному материалу и способам решения новой задачи.

Личностные результаты программы 2 года обучения:

- формирование активной исследовательской позиции;
- формирование сознательного отношения к непрерывному образованию как условию успешной профессиональной и общественной деятельности.

Личностные результаты программы 3 года обучения:

- выработка гибких умений переносить знания и навыки на новые формы учебной работы;
- развитие сообразительности и быстроты реакции при решении новых различных физических задач, связанных с практической деятельностью.

Личностные результаты программы 4 года обучения:

- развитие мотивации образовательной деятельности учащихся как основы саморазвития и совершенствования личности;
- формирование познавательных интересов, интеллектуальных и творческих способностей:
- повышение интеллектуального развития обучающихся, которое обеспечивает переход от обучения к самообразованию.

Предметные результаты:

• освоенные обучающимися в ходе изучения дисциплин умения, специфические для данной предметной области, виды деятельности по получению нового знания, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления.

Предметные результаты программы 1 года обучения:

- формирование представлений о физических явлениях, ознакомление с основами молекулярно-кинетической теории строения вещества, умение обращаться с простейшим физическим оборудованием, производить простейшие измерения, снимать показания со шкалы прибора;
- развитие умения самостоятельно выполнять и объяснять эксперименты;
- развитие умения наблюдать и изучать явления и свойства веществ и тел;
- развитие умения описывать результаты наблюдений, делать выводы;

• развитие умения использовать приобретённые знания и умения в практической деятельности и повседневной жизни.

Предметные результаты программы 2 года обучения:

- формирование представлений о следующих понятиях: вращательные, колебательные движения, термодинамика, энергия, электрические явления, электрический ток, магнитное поле и поток;
- развитие умения ориентироваться в явлениях и объектах окружающего мира, знать границы их применимости;
- развитие понимания определения физических величин и помнить определяющие формулы;
- развитие понимания, каким физическим принципам и законам подчиняются те или иные объекты и явления природы;

формирование знания модели поиска решений для задач по физике.

Предметные результаты программы 3 года обучения:

- формирование представлений о следующих понятиях: волны, звук, тепловые явления, внутренняя энергия, свет, источники света, преломление света, сферические линзы, строение ядра, термоядерная реакция;
- развитие способности примечать модели явлений и объектов окружающего мира;
- развитие умения анализировать условие задачи;
- развитие умения переформулировать и моделировать, заменять исходную задачу другой;
- развитие умения составлять план решения;
- развитие умения выдвигать и проверять предлагаемые для решения гипотезы;
- развитие умения владеть основными умственными операциями, составляющими поиск решения задачи;
- развитие умения владеть навыками подготовки и проведения эксперимента; Предметные результаты программы 4 года обучения:
 - формирование представлений о следующих понятиях: законы Ньютона, закон всемирного тяготения, движение планет, вес тела, сила трения, движение, инерция, импульс, закон сохранения энергии;
 - владение научной терминологией, ключевыми понятиями, методами и приемами при решении прикладных задач;
 - развитие умения решать разных типов задачи;
 - развитие умения распознавать и сравнивать факты и явления, ранжировать данные согласно определённым критериям, классифицировать, обобщать, делать выводы.

1.4.Учебный план

Таблица 1

№ п/п	Название раздела	Часы,	Теория	Практики	Формы
		всего			аттестации
					/контроля
1.	1 год обучения.	56	27	29	Контрольная
					работа
2.	2 год обучения	56	28	28	Контрольная
					работа
3.	3 год обучения	56	27	29	Контрольная
	-				работа

4.	4 год обучения	56	27	29	Контрольная работа
	Итого	224	109	115	

1.5.Учебно-тематической план

1 год обучения

Таблица 2

№ занятия	Тема	Часы, всего	Теория	Практики	Формы аттестации /контроля
1.	Вводное занятие. Знакомство с физикой как наукой.	1	1	0	Наблюдение
2.	Физика - наука о природе.	1	0,5	0,5	Наблюдение
3.	Научные методы изучения природы.	1	0,5	0,5	Наблюдение
4.	Физические величины и единицы измерения.	1	0,5	0,5	Наблюдение
5.	Измерение физических величин.	1	0,5	0,5	Наблюдение
6.	Точность измерений или «Семь раз отмерь».	1	0,5	0,5	Наблюдение
7.	Преобразование единиц измерения физических величин	1	0,5	0,5	Наблюдение
8.	Измерение физических величин. Решение задач.	1	0,5	0,5	Наблюдение
9.	Лабораторная работа: Измерение физических величин.	1	0,5	0,5	Наблюдение
10.	Строение вещества. Атомы и молекулы.	1	0,5	0,5	Наблюдение
11.	Диффузия. Броуновское движение. Взаимодействие молекул.	1	0,5	0,5	Наблюдение
12.	Три состояния вещества.	1	0,5	0,5	Наблюдение
13.	Механическое движение. Скорость.	1	0,5	0,5	Наблюдение
14.	Средняя скорость.	1	0,5	0,5	Наблюдение
15.	Вычисление средней скорости. Решение задач.	1	0,5	0,5	Наблюдение
16.	Координаты тела. График движения тела. График скорости.	1	0,5	0,5	Наблюдение
17.	Лабораторная работа: Определение средней скорости перемещения тела	1	0	1	Лабораторная работа
18.	Инерция. Взаимодействие тел.	1	0,5	0,5	Наблюдение

	Инертность.				
19.	Macca.	1	0,5	0,5	Наблюдение
20.	Взаимодействие тел. Решение	1	0,5	0,5	Наблюдение
	задач.	-	,,,,	0,0	Timesine Asimir
21.	Плотность.	1	0,5	0,5	Лабораторная
					работа
22.	Сила. Единицы сил.	1	0,5	0,5	Наблюдение
	Изображение сил.				
23.	Силы. Сила тяжести. Решение	1	0,5	0,5	Наблюдение
	задач.				
24.	Сила упругости. Закон Гука	1	0,5	0,5	Лабораторная
					работа
25.	Измерение сил. Динамометр.	1	0,5	0,5	Наблюдение
26.	Вес тела.	1	0,5	0,5	Наблюдение
27.	Сложение сил, направленных	1	0,5	0,5	Наблюдение
	по одной прямой.				
	Равнодействующая сил.				
28.	Сила трения. Коэффициент	1	0,5	0,5	Лабораторная
	трения.				работа
29.	Давление.	1	0,5	0,5	Наблюдение
30.	Давление газа. Решение задач.	1	0,5	0,5	Наблюдение
31.	Передача давления	1	0,5	0,5	Наблюдение
	жидкостями и газами. Закон				
	Паскаля				
32.	Расчёт давления жидкости на	1	0,5	0,5	Наблюдение
	дно и стенки сосуда. Решение				
	задач.	1	0.5	0.5	TT 6
33.	Сообщающиеся сосуды.	1	0,5	0,5	Наблюдение
2.4	Решение задач.	1	0.5	0.5	П.б
34.	Лабораторная работа:	1	0,5	0,5	Лабораторная
	Экспериментальное				работа
	определение плотности				
	раствора соли. Решение задач.				
35.	Атмосферное давление. Опыт	1	0,5	0,5	Наблюдение
33.	Торричелли.	1	0,5	0,5	Паолюдение
36.	Проявление атмосферного	1	0,5	0,5	Наблюдение
30.	давления. Решение задач.	1	0,5	0,5	Паозподение
37.	Закон Паскаля в задачах о	1	0,5	0,5	Наблюдение
37.	сообщающихся сосудах и	-	0,5	0,5	Пиозподение
	гидравлический пресс.				
38.	Гидравлический пресс.	1	0,5	0,5	Лабораторная
	Решение задач.			- ,-	работа
39.	Закон Архимеда.	1	0,5	0,5	Наблюдение
40.	Плавание тел.	1	0,5	0,5	Лабораторная
					работа
41.	Плавание тел. Решение задач.	1	0,5	0,5	Наблюдение
42.	Механическая работа.	1	0,5	0,5	Наблюдение
	Решение задач.				
43.	Мощность. Решение задач.	1	0,5	0,5	Наблюдение
44.	Вычисление мощности и	1	0,5	0,5	Наблюдение

	работы. Решение задач.				
45.	Простые механизмы. Рычаг.	1	0,5	0,5	Наблюдение
	Условия равновесия рычага.				
46.	Решение задач на условие	1	0,5	0,5	Наблюдение
	равновесия рычага.				
47.	Блоки. Теория.	1	1	0	Наблюдение
48.	Блоки. Решение задач.	1	0	1	Наблюдение
49.	Подолжения	1	0,5	0,5	Лабораторная
	Простые механизмы.				работа
50.	Момент силы. Правило	1	0,5	0,5	Наблюдение
	моментов. Задачи.				
51.	Контрольная работа на тему:	1	0	1	Контрольная
	Рычаги и блоки.				работа
52.	«Золотое правило» механики.	1	0,5	0,5	Наблюдение
53.	Коэффициент полезного	1	0,5	0,5	Лабораторная
	действия механизма.				работа
54.	Механическая энергия.	1	0,5	0,5	Наблюдение
	Превращения энергии. Закон				
	сохранения и изменения				
	энергии.				
55.	Энергия. Решение задач.	1	0,5	0,5	Наблюдение
56.	Итоговая контрольная работа	1	0	1	Контрольная
	по курсу				работа
	Итого	56	27	29	

2 год обучения

Таблица 3

№ занятия	Тема	Часы, всего	Теория	Практики	Формы аттестации /контроля
1.	Вводное занятие. Мир физики как науки.	1	1	0	Наблюдение
2.	Вращательное движение. Решение задач.	1	0,5	0,5	Наблюдение
3.	Колебательное движение. Маятники.	1	0,5	0,5	Наблюдение
4.	Колебательное движение. Решение задач.	1	0,5	0,5	Наблюдение
5.	Термодинамика. Тепловые явления. Тепловое равновесие. Температура.	1	0,5	0,5	Наблюдение
6.	Тепловое расширение твердых тел, жидкостей и газов.	1	0,5	0,5	Лабораторная работа
7.	Общий алгоритм решения физических задач. Решение задач по термодинамике и тепловому расширению тел.	1	0,5	0,5	Наблюдение
8.	Внутренняя энергия тела способы ее изменения. Виды	1	0,5	0,5	Наблюдение. Решение

	теплопередачи.				задач.
9.	Повторение математических	1	0,5	0,5	Наблюдение
	основ.				
10.	Теплоемкость.	1	0,5	0,5	Лабораторная
				ĺ	работа
11.	Теплоемкость. Решение задач.	1	0,5	0,5	Наблюдение
12.	Уравнение теплового баланса	1	0,5	0,5	Наблюдение
13.	Лабораторная работа: тепловой	1	0,5	0,5	Лабораторная
	баланс		- ,-	- 9-	работа
14.	Лабораторная работа:	1	0,5	0,5	Лабораторная
	теплообмен. Проведение		- ,-	- 9-	работа
	измерений				1
15.	Фазовые превращения.	1	0,5	0,5	Лабораторная
	Испарение и конденсация,		- ,-	- 7-	работа
	плавление и кристаллизация				
16.	Кипение, удельная теплота	1	0,5	0,5	Наблюдение
	парообразования. Горение,		,	ĺ	, ,
	удельная теплота сгорания				
	топлива.				
17.	Фазовые переходы. Решение	1	0,5	0,5	Наблюдение
	задач.				
18.	Зависимость температуры	1	0,5	0,5	Наблюдение
	кипения жидкости от давления				
19.	Теплота парообразования.	1	0,5	0,5	Наблюдение
	Решение задач.				
20.	Решение комбинированных	1	0,5	0,5	Наблюдение
	задач на тепловые явления				
21.	Тепловые двигатели. КПД	1	0,5	0,5	Наблюдение
	тепловых двигателей				
22.	Паровая машина. Паровая	1	0,5	0,5	Наблюдение
	турбина.				
23.	Двигатель внутреннего	1	0,5	0,5	Наблюдение
	сгорания.				
24.	Тепловые двигатели. Решение	1	0,5	0,5	Наблюдение
	задач.				
25.	Электрические явления.	1	0,5	0,5	Наблюдение
26.	Электрический заряд.	1	0,5	0,5	Наблюдение
	Измерение заряда.				
27.	Строение атома.	1	0,5	0,5	Наблюдение
28.	Электрические явления. Закон	1	0,5	0,5	Наблюдение
	Кулона.				
29.	Лабораторная работа: закон	1	0,5	0,5	Лабораторная
	Кулона				работа
30.	Закон сохранения	1	0,5	0,5	Наблюдение
	электрического заряда.				
31.	Электростатика. Решение задач.	1	0,5	0,5	Наблюдение
32.	Электрический ток.	1	0,5	0,5	Наблюдение
	Электрическая цепь				
33.	Сила тока. Единицы силы тока.	1	0,5	0,5	Наблюдение
	Амперметры.				
34.	Электрическое напряжение.	1	0,5	0,5	Наблюдение

35.	Сила тока и напряжение. Решение задач.	1	0,5	0,5	Наблюдение
36.	Закон Ома, закон Кирхгофа	1	0,5	0,5	Наблюдение
50.	параллельное и	1	0,5	0,5	Паолюдение
	последовательное соединение				
37.	Лабораторная работа: закон	1	0,5	0,5	Лабораторная
	Oma		,,,,	3,2	работа
38.	Решение задач на закон Ома	1	0,5	0,5	Наблюдение
39.	Закон Джоуля Ленца. Работа и	1	0,5	0,5	Наблюдение
	мощность электрического тока				
40.	Работа электрического тока.	1	0,5	0,5	Наблюдение
	Решение задач.				
41.	Лабораторная работа по закону	1	0,5	0,5	Лабораторная
	Ома для полной цепи				работа
42.	Закон Ома для однородного	1	0,5	0,5	Наблюдение
	участка цепи. Вычисление				
	сопротивления проводника				
43.	Расчет цепей. Решение задач.	1	0,5	0,5	Наблюдение
44.	Магнитное поле и его	1	0,5	0,5	Наблюдение
	характеристики.				
45.	Магнитное поле. Решение	1	0,5	0,5	Наблюдение
	задач.				
46.	Магнитный поток.	1	0,5	0,5	Наблюдение
47.	Магнитный поток. Решение	1	0,5	0,5	Наблюдение
	задач.				
48.	Электромагниты. Применение	1	0,5	0,5	Наблюдение
	электромагнитов.				
49.	Магнитное поле Земли.	1	0,5	0,5	Наблюдение
	Телеграфный аппарат.				
50.	Лабораторная работа.	1	0,5	0,5	Лабораторная
	Эквивалентность катушки с				работа
	током и постоянного магнита				
51.	Введение в дифференциальное	1	0,5	0,5	Наблюдение
	исчисление и его применение в				
	физике		0.7		
52.	Применение	1	0,5	0,5	Наблюдение
	дифференциального				
	исчисления в физике. Решение				
52	задач.	1	0.5	0.5	II 6
53.	Электрический ток в газах	1	0,5	0,5	Наблюдение
54.	Виды самостоятельного	1	0,5	0,5	Наблюдение
	газового разряда	1	0.5	0.5	11. 6
55.	Электрический ток в жидкостях	1	0,5	0,5	Наблюдение
<i>E</i> <	и полупроводниках.	1	0	1	IC a z == ···
56.	Итоговая контрольная работа	1	0	1	Контрольная
	по курсу	F.C	20	20	работа
	Итого	56	28	28	

№ занятия	Тема	Часы, всего	Теория	Практики	Формы аттестации /контроля
1.	Вводное занятие. Мир физики как науки.	1	1	0	Наблюдение
2.	Алгоритм решения задач по физике.	1	0,5	0,5	Наблюдение
3.	Внутренняя энергия тела способы ее изменения и виды теплопередачи.	1	0,5	0,5	Наблюдение
4.	Равноускоренное движение. Решение задач.	1	0,5	0,5	Наблюдение
5.	Равноускоренное движение. Графики пути, скорости и ускорения	1	0,5	0,5	Лабораторная работа
6.	Средняя скорость. Вычисление пути и времени движения. Решение задач.	1	0,5	0,5	Наблюдение
7.	Силы	1	1	0	Наблюдение
8.	Силы. Решение задач.	1	0	1	Наблюдение
9.	Движение по наклонной плоскости. Решение задач	1	0,5	0,5	Лабораторная работа
10.	Вращательное движение. Решение задач	1	0,5	0,5	Наблюдение
11.	Неравномерное криволинейное движение.	1	0,5	0,5	Наблюдение
12.	Сопоставление поступательного и вращательного движения	1	0,5	0,5	Наблюдение
13.	Неравномерное движение по окружности. Решение задач	1	0,5	0,5	Наблюдение
14.	Механические колебания	1	0,5	0,5	Наблюдение
15.	Механические колебания. Продолжение.	1	0,5	0,5	Наблюдение
16.	Механические колебания. Решение задач.	1	0,5	0,5	Наблюдение
17.	Практическое изучение модели пружинного маятника.	1	0,5	0,5	Лабораторная работа
18.	Практическое изучение модели математического маятника.	1	0,5	0,5	Наблюдение
19.	Механические колебания. Решение задач.	1	0,5	0,5	Наблюдение
20.	Волны. Звук	1	0,5	0,5	Наблюдение
21.	Тепловые явления	1	0,5	0,5	Наблюдение
22.	Тепловое расширение твердых тел. Коэффициенты объемного и линейного расширения	1	0,5	0,5	Наблюдение
23.	Лабораторная работа: Измерение коэффициента линейного расширения	1	0	1	Лабораторная работа

	стального стержня				
24.	Опыты и решение задач на	1	0,5	0,5	Наблюдение
	тепловое расширение				
25.	Тепловое равновесие. Решение	1	0,5	0,5	Наблюдение
	задач				
26.	Лабораторная работа:	1	0,5	0,5	Лабораторна
	Измерение теплоемкости				работа
27.	Внутренняя энергия тела и	1	0,5	0,5	Наблюдение
	способы её изменения.				
	Количество теплоты.				
28.	Внутренняя энергия. Решение	1	0,5	0,5	Наблюдение
• • •	задач		0.7		** -
29.	Расчёт работы в тепловых	1	0,5	0,5	Наблюдение
20	процессах		0.7		XX 6
30.	Агрегатные состояния.	1	0,5	0,5	Наблюдение
0.1	Фазовые переходы.	1	0.7	0.5	TT 6
31.	Свет. Источники света.	1	0,5	0,5	Наблюдение
22	Распространение света.	1	0.5	0.5	11.6
32.	Закон прямолинейного	1	0,5	0,5	Наблюдение
33.	распространения света	1	0.5	0,5	Наблюдение
34.	Отражение света.	1	0,5	0,5	Наблюдение
34.	Отражение света. Решение задач.	1	0,3	0,3	паолюдение
35.	Построение изображения в	1	0,5	0,5	Наблюдение
33.	плоском зеркале.	1	0,5	0,5	Паолюдение
36.	Построение изображения в	1	0,5	0,5	Наблюдение
50.	плоском зеркале. Решение	1	0,5	0,5	Паолодение
	задач.				
37.	Преломление света	1	0,5	0,5	Наблюдение
38.	Преломление света. Решение	1	0,5	0,5	Наблюдение
	задач.				
39.	Преломление света. Решение	1	0,5	0,5	Наблюдение
	задач.				
40.	Полное отражение.	1	0,5	0,5	Наблюдение
41.	Сферические линзы.	1	0,5	0,5	Наблюдение
42.	Построение изображений с	1	0,5	0,5	Наблюдение
	помощью линз.				
43.	Построение изображений с	1	0,5	0,5	Наблюдение
	помощью линз. Решение задач				
44.	Формула тонкой линзы.	1	0,5	0,5	Наблюдение
45.	Линейное увеличение линзы.	1	0,5	0,5	Наблюдение
46.	Глаз. Зрение. Восприятие	1	0,5	0,5	Наблюдение
	цветов.				
47.	Дисперсия света.	1	0,5	0,5	Наблюдение
48.	Строение ядра. Ядерная	1	0,5	0,5	Наблюдение
	энергия.				
49.	Строение ядра. Ядерная	1	0,5	0,5	Наблюдение
	энергия. Решение задач.				
50.	Открытие радиоактивности.	1	0,5	0,5	Наблюдение
	Радиоактивное излучение и				
	его свойства.				

51.	Альфа- и бета-распад. Правила	1	0,5	0,5	Наблюдение
	Содди.				
52.	Период полураспада.	1	0,5	0,5	Наблюдение
	Активности радионуклидов.				
53.	Поглощенная и эквивалентная	1	0,5	0,5	Наблюдение
	доза излучения. Счетчик				
	Гейгера.				
54.	Реакция деления ядер.	1	0,5	0,5	Наблюдение
	Термоядерная реакция.				
55.	Решение задач.	1	0	1	Наблюдение
56.	Итоговая контрольная работа	1	0	1	Контрольная
	по курсу				работа
	Итого	56	27	29	

4 год обучения

Таблица 5

№ занятия	Тема	Часы, всего	Теория	Практики	Формы аттестации /контроля
1.	Вводное занятие. Мир физики как науки.	1	1	0	Наблюдение
2.	Физические величины и их измерение. Точность.	1	0,5	0,5	Наблюдение
3.	Физические величины и их измерение. Погрешности.	1	0,5	0,5	Наблюдение
4.	Механическое движение.	1	0,5	0,5	Наблюдение
5.	Векторные величины.	1	0,5	0,5	Наблюдение
6.	Равномерное прямолинейное движение.	1	0,5	0,5	Наблюдение
7.	Средняя скорость.	1	0,5	0,5	Наблюдение
8.	Мгновенная скорость. Равноускоренное движение. Ускорение.	1	0,5	0,5	Наблюдение
9.	Свободное падение.	1	0,5	0,5	Наблюдение
10.	Движение тела, брошенного под углом к горизонту	1	0,5	0,5	Наблюдение
11.	Криволинейное движение.	1	0,5	0,5	Наблюдение
12.	Вращение твердого тела.	1	0,5	0,5	Наблюдение
13.	Первый закон Ньютона.	1	0,5	0,5	Наблюдение
14.	Второй закон Ньютона.	1	0,5	0,5	Наблюдение
15.	Законы Ньютона. Решение простейших задач.	1	0	1	Наблюдение
16.	Третий закон Ньютона.	1	0,5	0,5	Наблюдение
17.	Законы Ньютона. Решение задач.	1	0,5	0,5	Наблюдение
18.	Алгоритм решения задач динамики. Решение задач.	1	0,5	0,5	Наблюдение
19.	Сила упругости. Закон Гука.	1	0,5	0,5	Наблюдение
20.	Закон всемирного тяготения.	1	0,5	0,5	Наблюдение

	T= =	1	1		1
21.	21. Перегрузка. Вес тела на		0,5	0,5	Наблюдение
	полюсе и на экваторе.		0.7	0.5	
22.	Искусственные спутники	1	0,5	0,5	Наблюдение
22	Земли.	1	0.5	0.5	TT 6
23.	Движение планет.	1	0,5	0,5	Наблюдение
24.	Вес тела. Сила трения.	1	0,5	0,5	Наблюдение
25.	Виды равновесия.	1	0,5	0,5	Наблюдение
26.	Правило сил. Решения задач.	1	0,5	0,5	Наблюдение
27.	Равновесие тела с	1	0,5	0,5	Наблюдение
•	закрепленной осью вращения.		0.7		****
28.	Решение задач. Правило	1	0,5	0,5	Наблюдение
20	моментов. Статика.		0.7	0.5	XX 6
29.	Центр масс тела.	1	0,5	0,5	Наблюдение
30.	Теорема о движении центра	1	0,5	0,5	Наблюдение
	Macc.		0.7		*** **
31.	Движение связанных тел.	1	0,5	0,5	Наблюдение
32.	Движение по наклонной	1	0,5	0,5	Наблюдение
	плоскости.				
33.	Движение по окружности.	1	0,5	0,5	Наблюдение
34.	Комбинированные задачи	1	0,5	0,5	Наблюдение
	динамики.				
35.	Основное уравнение	1	0,5	0,5	Наблюдение
	динамики вращательного				
	движения.				
36.	Вычисление моментов	1	0,5	0,5	Наблюдение
25	инерции тел.		0.7	0.5	XX 6
37.	Теорема о взаимно	1	0,5	0,5	Наблюдение
20	перпендикулярных осях.	1	0.5	0.5	TT 6
38.	Решение задач на вращение	1	0,5	0,5	Наблюдение
20	твердого тела.	1	0.5	0.5	II 6
39.	Теорема Штейнера.	1	0,5	0,5	Наблюдение
40.	Вычисление моментов	1	0,5	0,5	Наблюдение
4.1	инерции. Решение задач.	1	0.5	0.5	11. 6
41.	Импульс. Закон сохранения	1	0,5	0,5	Наблюдение
40	импульса.	1	0.5	0.5	11.6
42.	• •		0,5	0,5	Наблюдение
	Решение задач на закон				
42	сохранения импульса.	1	0.5	0.5	1106
43.	Момент импульса. Закон	1	0,5	0,5	Наблюдение
	сохранения момента				
44.	импульса.	1	0.5	0,5	Иоб-ио
44.	Закон сохранения момента	1	0,5	0,3	Наблюдение
45.	импульса. Решение задач.	1	0,5	0,5	Наблюдение
43.	Работа. Теорема о кинетической энергии.	1	0,3	0,3	Паолюдение
46.	Работа переменной силы.	1	0,5	0,5	Наблюдение
40.	Раоота переменной силы. Решение задач.	1	0,5	0,5	паолюдение
47.	Работа силы тяжести.	1	0,5	0,5	Наблюдение
+ /.	Потенциальная энергия тела,	1	0,5	0,5	Паолюдение
	поднятого над Землей.				
48.	Вычисление работы. Решение	1	0,5	0,5	Наблюдение
70.	рычисление расоты. 1 сшение	1	0,5	0,5	Паолюдение

	задач.				
49.	Потенциальная энергия гравитационного взаимодействия.	1	0,5	0,5	Наблюдение
50.	Работа силы упругости.	1	0,5	0,5	Наблюдение
51.	Работа силы упругости. Решение задач.	1	0,5	0,5	Наблюдение
52.	Закон сохранения полной механической энергии.	1	0,5	0,5	Наблюдение
53.	Закон сохранения и превращения энергии. КПД. Мощность.	1	0,5	0,5	Наблюдение
54.	Связь мощности, силы, скорости.	1	0,5	0,5	Наблюдение
55.	Решение задач на закон сохранения энергии.	1	0	1	Наблюдение
56.	Итоговая контрольная работа по курсу	1	0	1	Контрольная работа
	Итого	56	27	29	

Содержание учебного (тематического) плана дополнительной общеобразовательной общеразивающей программы

1 год обучения

Тема 1. Вводное занятие. Знакомство с физикой как наукой.

Теория: Инструктаж по технике безопасности. Экскурсия по Институту электрофизики УрО РАН с демонстрацией работы различных реальных научных экспериментальных установок.

Тема 2. Физика - наука о природе.

Теория: Предмет физики. Язык физики.

Практика: Физика в окружающем нас мире. Физические тела. Физические явления.

Тема 3. Научные методы изучения природы.

Теория: Научные методы изучения природы.

Практика: Применение научных методов изучения природы.

Тема 4. Физические величины и единицы измерения.

Теория: Что такое измерение физической величины.

Практика: Простейшие измерительные приборы в нашей повседневной жизни.

Тема 5. Измерение физических величин.

Теория: Измерение физических величин. Цена деления шкалы измерительного прибора.

Практика: Вычисление и измерение площади фигур.

Тема 6. Точность измерений или «Семь раз отмерь».

Теория: Точность измерений.

Практика: Вычисление и измерение объема.

Тема 7. Преобразование единиц измерения физических величин

Теория: Мега, макро, микромир. Степени, отрицательные и положительные, едесятичные приставки.

Практика: Преобразование единиц измерения физических величин.

Тема 8. Измерение физических величин. Решение задач.

Теория: Измерение физических величин.

Тема 9. Лабораторная работа: Измерение физических величин.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: «Изготовление мензурки».

Тема 10. Строение вещества. Атомы и молекулы.

Теория: Строение вещества. Атомы и молекулы.

Практика: Практическая работа. Опрос по материалу.

Тема 11. Диффузия. Броуновское движение. Взаимодействие молекул.

Теория: Диффузия. Броуновское движение. Взаимодействие молекул..

Практика: Практическая работа. Решение задач.

Тема 12. Три состояния вещества.

Теория: Твердые тела. Жидкие тела. Газообразные тела.

Практика: Практическая работа. Опрос по материалу.

Тема 13. Механическое движение. Скорость.

Теория: Механическое движение. Скорость. Алгоритм решения задач.

Практика: Решение задач.

Тема 14. Средняя скорость.

Теория: Средняя скорость. Вычисление пути и времени движения.

Практика: Решение задач.

Тема 15. Вычисление средней скорости. Решение задач.

Теория: Вычисление средней скорости.

Практика: Решение задач.

Тема 16. Координаты тела. График движения тела. График скорости.

Теория: Координаты тела. График движения тела. График скорости.

Практика: Решение задач на графики движения и скорости. Усложненные задачи на среднюю скорость. Задачи на одновременное движение тел.

Тема 17. Лабораторная работа: Определение средней скорости перемещения тела.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: Определение средней скорости перемещения тела.

Тема 18. Инерция. Взаимодействие тел. Инертность.

Теория: Инерция. Взаимодействие тел. Инертность.

Практика: Решение задач.

Тема 19. Масса.

Теория: Масса - мера инертности тела. Измерение массы тела на весах.

Практика: Решение задач.

Тема 20. Взаимодействие тел. Решение задач.

Теория: Взаимодействие тел.

Практика: Решение задач.

Тема 21. Плотность.

Теория: Плотность. Единицы плотности. Вычисление массы и объема тела по плотности.

Практика: Лабораторная работа: измерение плотности твердого тела.

Тема 22. Сила. Единицы сил. Изображение сил.

Теория: Сила. Единицы сил.

Практика: Изображение сил.

Тема 23. Силы. Сила тяжести. Решение задач.

Теория: Силы. Сила тяжести.

Практика: Решение задач.

Тема 24. Сила упругости. Закон Гука.

Теория: Сила упругости. Закон Гука. Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: измерение коэффициента жесткости пружины.

Тема 25. Измерение сил. Динамометр.

Теория: Измерение сил. Динамометр.

Практика: Измерение сил.

Тема 26. Вес тела. Теория: Вес тела.

Практика: Решение задач на вычисление веса тела.

Тема 27. Сложение сил, направленных по одной прямой. Равнодействующая сил.

Теория: Сложение сил, направленных по одной прямой. Равнодействующая сил.

Практика: Решение задач.

Тема 28. Сила трения. Коэффициент трения.

Теория: Сила трения. Коэффициент трения. Лабораторная работа: измерение коэффициента трения скольжения.

Практика: Решение задач.

Тема 29. Давление.

Теория: Давление. Единицы давления. Методы увеличения и уменьшения давления.

Практика: Решение задач на вычисление давления.

Тема 30. Давление газа. Решение задач.

Теория: Давление газа Практика: Решение задач.

Тема 31. Передача давления жидкостями и газами. Закон Паскаля.

Теория: Передача давления жидкостями и газами. Закон Паскаля.

Практика: Решение задач.

Тема 32. Расчёт давления жидкости на дно и стенки сосуда. Решение задач.

Теория: Расчёт давления жидкости на дно и стенки сосуда.

Практика: Решение задач.

Тема 33. Сообщающиеся сосуды. Решение задач.

Теория: Сообщающиеся сосуды.

Практика: Решение задач.

Тема 34. Лабораторная работа: Экспериментальное определение плотности раствора соли. Решение задач.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: Экспериментальное определение плотности раствора соли. Решение задач.

Тема 35. Атмосферное давление. Опыт Торричелли.

Теория: Атмосферное давление.

Практика: Опыт Торричелли.

Тема 36. Проявление атмосферного давления. Решение задач.

Теория: Барометр анероид. Атмосферное давление на разных высотах. Проявления атмосферного давления.

Практика: Решение задач.

Тема 37. Закон Паскаля в задачах о сообщающихся сосудах и гидравлический пресс.

Теория: Закон Паскаля в задачах о сообщающихся сосудах и гидравлический пресс.

Практика: Решение задач.

Тема 38. Гидравлический пресс. Решение задач.

Теория: Гидравлический пресс. Инструктаж по проведению лабораторной работы.

Практика: Решение задач. Лабораторная работа: гидравлический пресс.

Тема 39. Закон Архимеда.

Теория: Закон Архимеда.

Тема 40. Плавание тел.

Теория: Плавание тел.

Практика: Инструктаж по проведению лабораторной работы. Лабораторная работа: Закон Архимеда. Плавание тел. Измерение силы Архимеда, действующей в воде на деревянный брусок.

Тема 41. Плавание тел. Решение задач.

Теория: Плавание тел. Практика: Решение задач.

Тема 42. Механическая работа. Решение задач.

Теория: Механическая работа. Практика: Решение задач.

Тема 43. Мощность. Решение задач.

Теория: Мощность.

Практика: Решение задач.

Тема 44. Вычисление мощности и работы. Решение задач.

Теория: Вычисление мощности и работы.

Практика: Решение задач.

Тема 45. Простые механизмы. Рычаг. Условия равновесия рычага.

Теория: Простые механизмы. Рычаг. Условия равновесия рычага.

Практика: Решение задач.

Тема 46. Решение задач на условие равновесия рычага.

Теория: Условия равновесия рычага.

Практика: Решение задач на условие равновесия рычага

Тема 47. Блоки. Теория.

Теория: Блоки. Теория.

Тема 48. Блоки. Решение задач.

Практика: Блоки. Решение задач.

Тема 49. Простые механизмы.

Теория: Простые механизмы. Инструктаж по проведению лабораторной работы. Практика: Решение задач. Лабораторная работа: рычаги и блоки в велосипеде.

Тема 50. Момент силы. Правило моментов. Задачи.

Теория: Момент силы. Правило моментов.

Практика: Решение задач.

Тема 51. Контрольная работа на тему: Рычаги и блоки.

Практика: Контрольная работа на тему: Рычаги и блоки.

Тема 52. «Золотое правило» механики.

Теория: «Золотое правило» механики.

Практика: Решение задач.

Тема 53. Коэффициент полезного действия механизма.

Теория: Коэффициент полезного действия механизма. Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: расчёт коэффициента полезного действия санок.

Тема 54. Механическая энергия. Превращения энергии. Закон сохранения и изменения энергии.

Теория: Механическая энергия. Превращения энергии. Закон сохранения и изменения энергии.

Практика: Решение задач.

Тема 55. Энергия. Решение задач.

Теория: Энергия.

Практика: Решение задач.

Тема 56. Итоговая контрольная работа по курсу.

Практика: Итоговая контрольная работа по курсу.

2 год обучения

Тема 1. Вводное занятие. Мир физики как науки.

Теория: Инструктаж по технике безопасности. Экскурсия по Институту электрофизики УрО РАН с демонстрацией работы различных реальных научных экспериментальных установок.

Тема 2. Вращательное движение. Решение задач.

Теория: Вращательное движение. Период и частота вращения. Линейная скорость точки на вращающемся теле. Вращательное движение. .

Практика: Решение задач.

Тема 3. Колебательное движение. Маятники.

Теория: Колебательное движение. Маятники..

Практика: Решение задач.

Тема 4. Колебательное движение. Решение задач.

Теория: Колебательное движение.

Практика: Решение задач.

Тема 5. Термодинамика. Тепловые явления. Тепловое равновесие. Температура.

Теория: Термодинамика. Тепловые явления. Тепловое равновесие. Температура.

Практика: Решение задач.

Тема 6. Тепловое расширение твердых тел, жидкостей и газов.

Теория: Тепловое расширение твердых тел, жидкостей и газов. Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: Измерение коэффициента линейного расширения стального стержня.

Тема 7. Общий алгоритм решения физических задач. Решение задач по термодинамике и тепловому расширению тел.

Теория: Общий алгоритм решения физических задач.

Практика: Решение задач по термодинамике и тепловому расширению тел.

Тема 8. Внутренняя энергия тела способы ее изменения. Виды теплопередачи.

Теория: Внутренняя энергия тела и способы ее изменения. Количество теплоты. Виды теплопередачи: теплопроводность, конвекция, излучение.

Практика: Решение задач.

Тема 9. Повторение математических основ.

Теория: Повторение математических основ для решения физических задач.

Практика: Решение задач.

Тема 10. Теплоемкость.

Теория: Теплоемкость тела. Удельная теплоемкость вещества. Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: Измерение теплоемкости твердых тел.

Тема 11. Теплоемкость. Решение задач.

Теория: Теплоемкость.

Практика: Решение задач на вычисление количества теплоты. Решение задач на график нагревания. Решение задач на изменение внутренней энергии.

Тема 12. Уравнение теплового баланса.

Теория: Уравнение теплового баланса.

Практика: Решение задач на уравнение теплового баланса.

Тема 13. Лабораторная работа: тепловой баланс.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: тепловой баланс.

Тема 14. Лабораторная работа: теплообмен. Проведение измерений.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: теплообмен. Проведение измерений.

Тема 15. Фазовые превращения. Испарение и конденсация, плавление и кристаллизация.

Теория: Фазовые превращения. Испарение и конденсация, плавление и кристаллизация. Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: наблюдение процесса плавления кристаллического олова и аморфного органического твердого тела.

Тема 16. Кипение, удельная теплота парообразования. Горение, удельная теплота сгорания топлива.

Теория: Кипение, удельная теплота парообразования. Горение, удельная теплота сгорания топлива.

Практика: Решение задач.

Тема 17. Фазовые переходы. Решение задач.

Теория: Фазовые переходы. Практика: Решение задач.

Тема 18. Зависимость температуры кипения жидкости от давления.

Теория: Зависимость температуры кипения жидкости от давления.

Практика: Решение задач.

Тема 19. Теплота парообразования. Решение задач.

Теория: Теплота парообразования.

Практика: Решение задач.

Тема 20. Решение комбинированных задач на тепловые явления.

Теория: Тепловые явления.

Практика: Решение задач. Решение комбинированных задач на тепловые явления.

Тема 21. Тепловые двигатели. КПД тепловых двигателей.

Теория: Тепловые двигатели. КПД тепловых двигателей.

Практика: Решение задач.

Тема 22. Паровая машина. Паровая турбина.

Теория: Паровая машина. Паровая турбина.

Практика: Решение задач.

Тема 23. Двигатель внутреннего сгорания.

Теория: Двигатель внутреннего сгорания.

Практика: Решение задач.

Тема 24. Тепловые двигатели. Решение задач.

Теория: Тепловые двигатели.

Практика: Решение задач.

Тема 25. Электрические явления.

Теория: Электризация тел. Два рода электрических зарядов. Проводники и диэлектрики.

Практика: Решение задач.

Тема 26. Электрический заряд. Измерение заряда.

Теория: Электрический заряд. Измерение заряда. Электрическое поле. Делимость электрического заряда.

Практика: Решение задач.

Тема 27. Строение атома.

Теория: Строение атома. Практика: Решение задач.

Тема 28. Электрические явления. Закон Кулона.

Теория: Электрические явления. Закон Кулона. Объяснение электрических явлений. Электростатическая индукция. Свойства зарядов на проводниках. Электростатический двигатель.

Практика: Решение задач.

Тема 29. Лабораторная работа: закон Кулона.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: закон Кулона.

Тема 30. Закон сохранения электрического заряда.

Теория: Закон сохранения электрического заряда

Практика: Решение задач.

Тема 31. Электростатика. Решение задач.

Теория: Электростатика. Практика: Решение задач.

Тема 32. Электрический ток. Электрическая цепь.

Теория: Электрический ток. Электрическая цепь. Составные части электрической цепи. Изображение схем электрических цепей.

Практика: Решение задач. Изображение схем электрических цепей.

Тема 33. Сила тока. Единицы силы тока. Амперметры.

Теория: Сила тока. Единицы силы тока. Амперметры.

Практика: Решение задач.

Тема 34. Электрическое напряжение.

Теория: Электрическое напряжение. Вольтметр, сила тока, напряжение.

Практика: Решение задач.

Тема 35. Сила тока и напряжение. Решение задач.

Теория: Сила тока и напряжение.

Практика: Решение задач.

Тема 36. Закон Ома, закон Кирхгофа параллельное и последовательное соединение.

Теория: Закон Ома, закон Кирхгофа параллельное и последовательное соединение.

Практика: Решение задач.

Тема 37. Лабораторная работа: закон Ома.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: закон Ома.

Тема 38. Решение задач на закон Ома.

Теория: Закон Ома. Повторение.

Практика: Решение задач.

Тема 39. Закон Джоуля Ленца. Работа и мощность электрического тока.

Теория: Закон Джоуля Ленца. Работа и мощность электрического тока.

Практика: Решение задач.

Тема 40. Работа электрического тока. Решение задач.

Теория: Работа электрического тока.

Практика: Решение задач.

Тема 41. Лабораторная работа по закону Ома для полной цепи.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа по закону Ома для полной цепи.

Тема 42. Закон Ома для однородного участка цепи. Вычисление сопротивления проводника.

Теория: Закон Ома для однородного участка цепи. Вычисление сопротивления проводника.

Практика: Решение задач. Вычисление сопротивления проводника.

Тема 43. Расчет цепей. Решение задач.

Теория: Расчет цепей. Практика: Решение задач.

Тема 44. Магнитное поле и его характеристики.

Теория: Магнитное поле и его характеристики.

Практика: Решение задач.

Тема 45. Магнитное поле. Решение задач.

Теория: Магнитное поле. Повторение.

Практика: Решение задач. **Тема 46. Магнитный поток.** Теория: Магнитный поток.

Практика: Решение задач.

Тема 47. Магнитный поток. Решение задач.

Теория: Магнитный поток. Повторение.

Практика: Решение задач.

Тема 48. Электромагниты. Применение электромагнитов.

Теория: Электромагниты. Применение электромагнитов.

Практика: Решение задач.

Тема 49. Магнитное поле Земли. Телеграфный аппарат.

Теория: Магнитное поле Земли. Телеграфный аппарат.

Практика: Решение задач.

Тема 50. Лабораторная работа. Эквивалентность катушки с током и постоянного магнита.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа. Эквивалентность катушки с током и постоянного магнита.

Тема 51. Введение в дифференциальное исчисление и его применение в физике.

Теория: Введение в дифференциальное исчисление и его применение в физике.

Практика: Решение задач.

Тема 52. Применение дифференциального исчисления в физике. Решение задач.

Теория: Применение дифференциального исчисления в физике.

Практика: Решение задач.

Тема 53. Электрический ток в газах.

Теория: Электрический ток в газах.

Практика: Решение задач.

Тема 54. Виды самостоятельного газового разряда.

Теория: Виды самостоятельного газового разряда.

Практика: Решение задач.

Тема 55. Электрический ток в жидкостях и полупроводниках.

Теория: Электрический ток в жидкостях и полупроводниках.

Практика: Решение задач.

Тема 56. Итоговая контрольная работа по курсу.

Практика: Итоговая контрольная работа по курсу.

3 год обучения

Тема 1. Вводное занятие. Мир физики как науки.

Теория: Инструктаж по технике безопасности. Экскурсия по Институту электрофизики УрО РАН с демонстрацией работы различных реальных научных экспериментальных установок.

Тема 2. Алгоритм решения задач по физике.

Теория: Алгоритм решения задач по физике. Физические величины и их измерение. Точность физических величин.

Практика: Измерение физических величин.

Тема 3. Внутренняя энергия тела способы ее изменения и виды теплопередачи.

Теория: Внутренняя энергия тела способы ее изменения и виды теплопередачи.

Практика: Решение задач.

Тема 4. Равноускоренное движение. Решение задач.

Теория: Равноускоренное движение.

Практика: Решение задач.

Тема 5. Равноускоренное движение. Графики пути, скорости и ускорения.

Теория: Равноускоренное движение. Графики пути, скорости и ускорения. Инструктаж по проведению лабораторной работы.

Практика: Решение задач. Лабораторная работа: Наблюдение за движением игрушечной машинки.

Тема 6. Средняя скорость. Вычисление пути и времени движения. Решение задач.

Теория: Средняя скорость. Вычисление пути и времени движения.

Практика: Решение задач.

Тема 7. Силы.

Теория: Силы.

Тема 8. Силы. Решение задач.

Практика: Силы. Решение задач.

Тема 9. Движение по наклонной плоскости. Решение задач.

Теория: Движение по наклонной плоскости. Инструктаж по проведению лабораторной работы.

Практика: Решение задач. Лабораторная работа: Измерение силы, действующей на тело на наклонной плоскости в зависимости от угла наклона.

Тема 10. Вращательное движение. Решение задач.

Теория: Вращательное движение.

Практика: Решение задач.

Тема 11. Неравномерное криволинейное движение.

Теория: Неравномерное криволинейное движение.

Практика: Решение задач.

Тема 12. Сопоставление поступательного и вращательного движения.

Теория: Сопоставление поступательного и вращательного движения.

Практика: Решение задач.

Тема 13. Неравномерное движение по окружности. Решение задач.

Теория: Неравномерное движение по окружности.

Практика: Решение задач.

Тема 14. Механические колебания.

Теория: Механические колебания.

Практика: Решение задач.

Тема 15. Механические колебания. Продолжение.

Теория: Механические колебания. Продолжение.

Практика: Решение задач.

Тема 16. Механические колебания. Решение задач.

Теория: Механические колебания. Повторение.

Практика: Решение задач.

Тема 17. Практическое изучение модели пружинного маятника.

Теория: Практическое изучение модели пружинного маятника. Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: Измерение периода и частоты пружинного и математического маятников.

Тема 18. Практическое изучение модели математического маятника.

Теория: Модель математического маятника.

Практика: Практическое изучение модели математического маятника.

Тема 19. Механические колебания. Решение задач.

Теория: Механические колебания.

Практика: Решение задач. **Тема 20. Волны. Звук.** Теория: Волны. Звук. Практика: Решение задач. **Тема 21. Тепловые явления.**

Теория: Тепловые явления. Практика: Решение задач.

Тема 22. Тепловое расширение твердых тел. Коэффициенты объемного и линейного расширения.

Теория: Тепловое расширение твердых тел. Коэффициенты объемного и линейного расширения.

Практика: Решение задач.

Тема 23. Лабораторная работа: Измерение коэффициента линейного расширения стального стержня.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: Измерение коэффициента линейного расширения стального стержня.

Тема 24. Опыты и решение задач на тепловое расширение.

Теория: Тепловое расширение.

Практика: Опыты и решение задач на тепловое расширение.

Тема 25. Тепловое равновесие. Решение задач.

Теория: Тепловое равновесие.

Практика: Решение задач.

Тема 26. Лабораторная работа: Измерение теплоемкости.

Теория: Инструктаж по проведению лабораторной работы.

Практика: Лабораторная работа: Измерение теплоемкости.

Тема 27. Внутренняя энергия тела и способы её изменения. Количество теплоты.

Теория: Внутренняя энергия тела и способы её изменения. Количество теплоты.

Практика: Решение задач.

Тема 28. Внутренняя энергия. Решение задач.

Теория: Внутренняя энергия. Практика: Решение задач.

Тема 29. Расчёт работы в тепловых процессах.

Теория: Расчёт работы в тепловых процессах.

Практика: Решение задач.

Тема 30. Агрегатные состояния. Фазовые переходы.

Теория: Агрегатные состояния. Фазовые переходы.

Практика: Решение задач.

Тема 31. Свет. Источники света. Распространение света.

Теория: Свет. Источники света. Распространение света.

Практика: Решение задач.

Тема 32. Закон прямолинейного распространения света.

Теория: Закон прямолинейного распространения света. Следствия из закона прямолинейного распространения света.

Практика: Решение задач.

Тема 33. Отражение света.

Теория: Отражение света. Законы отражения.

Тема 34. Отражение света. Решение задач.

Теория: Отражение света. Практика: Решение задач.

Тема 35. Построение изображения в плоском зеркале.

Теория: Построение изображения в плоском зеркале. Практика: Построение изображения в плоском зеркале..

Тема 36. Построение изображения в плоском зеркале. Решение задач.

Теория: Построение изображения в плоском зеркале.

Практика: Решение задач. **Тема 37. Преломление света.** Теория: Преломление света. Практика: Решение задач.

Тема 38. Преломление света. Решение задач.

Теория: Преломление света. Практика: Решение задач.

Тема 39. Преломление света. Решение задач.

Теория: Преломление света. Повторение.

Практика: Решение задач. **Тема 40. Полное отражение.**

Теория: Полное отражение. Предельный угол полного отражения.

Практика: Решение задач. **Тема 41. Сферические линзы.**

Теория: Сферические линзы. Основные определения.

Практика: Решение задач.

Тема 42. Построение изображений с помощью линз.

Теория: Построение изображений с помощью линз. Практика: Построение изображений с помощью линз.

Тема 43. Построение изображений с помощью линз. Решение задач.

Теория: Построение изображений с помощью линз.

Практика: Решение задач.

Тема 44. Формула тонкой линзы.

Теория: Формула тонкой линзы.

Практика: Решение задач.

Тема 45. Линейное увеличение линзы.

Теория: Линейное увеличение линзы.

Практика: Решение задач.

Тема 46. Глаз. Зрение. Восприятие цветов.

Теория: Глаз. Зрение. Восприятие цветов.

Практика: Решение задач. **Тема 47.** Дисперсия света. Теория: Дисперсия света. Практика: Решение задач.

Тема 48. Строение ядра. Ядерная энергия.

Теория: Строение ядра. Ядерная энергия.

Практика: Решение задач.

Тема 49. Строение ядра. Ядерная энергия. Решение задач.

Теория: Строение ядра. Ядерная энергия.

Практика: Решение задач.

Тема 50. Открытие радиоактивности. Радиоактивное излучение и его свойства.

Теория: Открытие радиоактивности. Радиоактивное излучение и его свойства.

Тема 51. Альфа- и бета-распад. Правила Содди.

Теория: Альфа- и бета-распад. Правила Содди.

Практика: Решение задач.

Тема 52. Период полураспада. Активности радионуклидов.

Теория: Период полураспада. Активности радионуклидов.

Практика: Решение задач.

Тема 53. Поглощенная и эквивалентная доза излучения. Счетчик Гейгера.

Теория: Поглощенная и эквивалентная доза излучения. Счетчик Гейгера.

Практика: Решение задач.

Тема 54. Реакция деления ядер. Термоядерная реакция.

Теория: Реакция деления ядер. Термоядерная реакция.

Практика: Решение задач. Тема 55. Решение задач.

Практика: Решение задач на пройденные темы.

Тема 56. Итоговая контрольная работа по курсу.

Практика: Итоговая контрольная работа по курсу.

4 год обучения

Тема 1. Вводное занятие. Мир физики как науки.

Теория: Инструктаж по технике безопасности. Экскурсия по Институту электрофизики УрО РАН с демонстрацией работы различных реальных научных экспериментальных установок.

Тема 2. Физические величины и их измерение. Точность.

Теория: Физические величины и их измерение. Точность физических величин.

Практика: Измерение физических величин.

Тема 3. Физические величины и их измерение. Погрешности.

Теория: Погрешность прямых измерений. Погрешность косвенных измерений. Вычисление случайной погрешности.

Практика: Задачи на вычисление погрешностей.

Тема 4. Механическое движение.

Теория: Основные определения кинематики.

Практика: Решение задач.

Тема 5. Векторные величины.

Теория: Векторные величины. Действия над векторами. Проекции вектора на координаты оси. Действия над проекциями вектора.

Практика: Решение задач.

Тема 6. Равномерное прямолинейное движение.

Теория: Равномерное прямолинейное движение. Графическое описание.

Практика: Решение задач.

Тема 7. Средняя скорость.

Теория: Средняя скорость. Средняя путевая скорость. Относительность движения. Формула сложения скоростей.

Практика: Решение задач.

Тема 8. Мгновенная скорость. Равноускоренное движение. Ускорение.

Теория: Мгновенная скорость. Равноускоренное движение. Ускорение. Средняя скорость при равноускоренном движении.

Практика: Решение задач.

Тема 9. Свободное падение.

Теория: Свободное падение. Ускорение свободного падения.

Тема 10. Движение тела, брошенного под углом к горизонту.

Теория: Движение тела, брошенного под углом к горизонту.

Практика: Решение задач.

Тема 11. Криволинейное движение.

Теория: Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение.

Практика: Решение задач.

Тема 12. Вращение твердого тела.

Теория: Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Практика: Решение задач.

Тема 13. Первый закон Ньютона.

Теория: Первый закон Ньютона. Взаимодействие тел и их ускорение.

Практика: Решение задач.

Тема 14. Второй закон Ньютона.

Теория: Масса и ее измерение. Второй закон Ньютона. Равнодействующая.

Практика: Решение задач.

Тема 15. Законы Ньютона. Решение простейших задач.

Теория: Законы Ньютона.

Практика: Решение простейших задач.

Тема 16. Третий закон Ньютона.

Теория: Третий закон Ньютона. Принцип относительности Галилея.

Практика: Решение задач.

Тема 17. Законы Ньютона. Решение задач.

Практика: Законы Ньютона. Решение задач.

Тема 18. Алгоритм решения задач динамики. Решение задач.

Теория: Алгоритм решения задач динамики.

Практика: Решение задач.

Тема 19. Сила упругости. Закон Гука.

Практика: Сила упругости. Закон Гука.

Практика: Решение задач.

Тема 20. Закон всемирного тяготения.

Теория: Закон всемирного тяготения. Сила тяжести и вес тела. Невесомость.

Практика: Решение задач.

Тема 21. Перегрузка. Вес тела на полюсе и на экваторе.

Теория: Перегрузка. Вес тела на полюсе и на экваторе.

Практика: Решение задач.

Тема 22. Искусственные спутники Земли.

Теория: Искусственные спутники Земли. Первая космическая скорость. Геостационарная орбита.

Практика: Решение задач.

Тема 23. Движение планет.

Теория: Движение планет. Законы Кеплера.

Практика: Решение задач.

Тема 24. Вес тела. Сила трения.

Теория: Вес тела. Сила трения.

Практика: Решение задач.

Тема 25. Виды равновесия.

Теория: Виды равновесия. Условие равновесия тела при отсутствии вращения.

Практика: Решение задач.

Тема 26. Правило сил. Решения задач.

Теория: Правило сил.

Практика: Решение задач.

Тема 27. Равновесие тела с закрепленной осью вращения.

Теория: Равновесие тела с закрепленной осью вращения. Следствия из условий равновесия тела.

Практика: Решение задач.

Тема 28. Решение задач. Правило моментов. Статика.

Теория: Правило моментов. Статика.

Практика: Решение задач. **Тема 29. Центр масс тела.**

Теория: Центр масс тела и методы определения его положения. Определение положения центра масс тела.

Практика: Решение задач.

Тема 30. Теорема о движении центра масс.

Теория: Теорема о движении центра масс

Практика: Решение задач.

Тема 31. Движение связанных тел.

Теория: Движение связанных тел.

Практика: Решение задач.

Тема 32. Движение по наклонной плоскости.

Теория: Движение по наклонной плоскости.

Практика: Решение задач.

Тема 33. Движение по окружности.

Теория: Движение по окружности.

Практика: Решение задач.

Тема 34. Комбинированные задачи динамики.

Теория: Комбинированные задачи динамики.

Практика: Решение задач.

Тема 35. Основное уравнение динамики вращательного движения.

Теория: Основное уравнение динамики вращательного движения.

Практика: Решение задач.

Тема 36. Вычисление моментов инерции тел.

Теория: Вычисление моментов инерции тел.

Практика: Решение задач.

Тема 37. Теорема о взаимно перпендикулярных осях.

Теория: Теорема о взаимно перпендикулярных осях.

Практика: Решение задач.

Тема 38. Решение задач на вращение твердого тела.

Теория: Вращение твердого тела.

Практика: Решение задач.

Тема 39. Теорема Штейнера.

Теория: Теорема Штейнера.

Практика: Решение задач.

Тема 40. Вычисление моментов инерции. Решение задач.

Теория: Вычисление моментов инерции.

Практика: Решение задач.

Тема 41. Импульс. Закон сохранения импульса.

Теория: Импульс. Закон сохранения импульса. Границы применимости закона сохранения импульса.

Практика: Решение задач.

Тема 42. Реактивное движение. Решение задач на закон сохранения импульса.

Теория: Реактивное движение.

Практика: Решение задач на закон сохранения импульса.

Тема 43. Момент импульса. Закон сохранения момента импульса.

Теория: Момент импульса. Закон сохранения момента импульса. Следствия из закона сохранения момента импульса.

Практика: Решение задач.

Тема 44. Закон сохранения момента импульса. Решение задач.

Теория: Закон сохранения момента импульса.

Практика: Решение задач.

Тема 45. Работа. Теорема о кинетической энергии.

Теория: Работа. Теорема о кинетической энергии.

Практика: Решение задач.

Тема 46. Работа переменной силы. Решение задач.

Теория: Работа переменной силы.

Практика: Решение задач.

Тема 47. Работа силы тяжести. Потенциальная энергия тела, поднятого над Землей.

Теория: Работа силы тяжести. Потенциальная энергия тела, поднятого над Землей.

Практика: Решение задач.

Тема 48. Вычисление работы. Решение задач.

Теория: Вычисление работы. Практика: Решение задач.

Тема 49. Потенциальная энергия гравитационного взаимодействия.

Теория: Потенциальная энергия гравитационного взаимодействия. Вторая космическая скорость.

Практика: Решение задач.

Тема 50. Работа силы упругости.

Теория: Работа силы упругости.

Практика: Решение задач.

Тема 51. Работа силы упругости. Решение задач.

Теория: Работа силы упругости.

Практика: Решение задач.

Тема 52. Закон сохранения полной механической энергии.

Теория: Закон сохранения полной механической энергии.

Практика: Решение задач.

Тема 53. Закон сохранения и превращения энергии. КПД. Мощность.

Теория: Закон сохранения и превращения энергии. КПД. Мощность.

Практика: Решение задач.

Тема 54. Связь мощности, силы, скорости.

Теория: Связь мощности, силы, скорости.

Практика: Решение задач.

Тема 55. Решение задач на закон сохранения энергии.

Практика: Решение задач на закон сохранения энергии.

Тема 56. Итоговая контрольная работа по курсу.

Практика: Итоговая контрольная работа по курсу.

2. Комплекс организационно-педагогических условий 2.1. Календарный учебный график

Таблина 6

Год обучения	Дата начала	Дата окончания	Количество учебных	Количество учебных лней	Количество учебных	Режим занятий
	обучения	обучения	недель	днеи	часов	
1 год	15	30 апреля	28	56	56	2 занятия в

	сентября					неделю по 1 часу
2 год	15	30 апреля	28	56	56	2 занятия в
	сентября					неделю по 1 часу
3 год	15	30 апреля	28	56	56	2 занятия в
	сентября					неделю по 1 часу
4 год	15	30 апреля	28	56	56	2 занятия в
	сентября					неделю по 1 часу

Каникулы: осенние каникулы — с 30 октября по 5 ноября; зимние каникулы — с 1 по 7 января; весенние каникулы — с 25 по 31 марта

2.2.Условия реализации программы 2.2.1. Материально-техническое обеспечение

Требования к помещению и оборудованию:

- столы, стулья по количеству обучающихся и 1 рабочим местом для педагога;
- Маркерная доска + маркеры;
- Лабораторный комплект (набор) по механике;
- Лабораторный комплект (набор) по электродинамике;
- Лабораторный комплект (набор) по оптике;
- Лабораторный комплект (набор) по квантовым явлениям;
- Лабораторный комплект (набор) по молекулярной физике и термодинамике.

2.2.2. Кадровое обеспечение реализации программы:

Педагоги дополнительного образования осуществляют профессиональную деятельность при условии наличия высшего образования или среднего профессионального образования в рамках укрупненных групп специальностей и направлений подготовки высшего образования и специальностей среднего профессионального образования «Образование и педагогические науки», отсутствие ограничений на занятие педагогической деятельностью, установленных в РФ.

Таблица 7

№ п/п	Педагог	Образование, специальность, квалификация, звание		
1	Некрасов Игорь Александрович	Член-корреспондент Российской академии наук. Профессор УрО РАН, доктор физико-математических наук.		
2	Музюкин Илья Львович	Кандидат физико-математических наук, научный сотрудник лаборатории физической электроники в Институте Электрофизики УрО РАН.		
3	Крутикова Ирина Владимировна	Кандидат технических наук, Научный сотрудник Лаборатории комплексных электрофизических исследований ИЭФ УрО РАН		
4	Макарова Марина Викторовна	Кандидат физико-математических наук, старший научный сотрудник лаборатории нейтронно-синхротронных исследований наноструктур Института физики металлов УрО РАН		
5	Спирина Ирина Александровна	Педагог физики и математики, сотрудник лаборатории механики деформаций ИМАШ УрО РАН.		

2.2.3. Методические материалы

Для реализации содержания программы используются педагогические технологии, методы, приемы, формы и средства, способствующие получению технических знаний и умений, формированию системного восприятия материала образовательной программы и соответствующие возрастным особенностям подросткового возраста.

Методы обучения: словесный, наглядный, практический, объяснительноиллюстративный, исследовательский, проблемный, игровой, дискуссионный.

Методы воспитания: убеждение, поощрение, мотивация.

Содержание практических занятий ориентировано на овладение обучающимися основных тем программы.

В работе используются педагогические технологии: технология индивидуализации обучения, технология группового обучения, дифференцированного, исследовательского обучения.

Программой предусмотрены следующие виды деятельности обучающихся:

- освоение теоретического и практического материала на занятиях;
- проведение опытов, экспериментов;
- участие в экскурсиях;
- промежуточная аттестация в форме решения задач;
- самостоятельная практическая работа: выполнение домашних заданий, решение задач.

2.3. Формы аттестации/контроля и оценочные материалы

Отслеживание результатов реализации программы проводится по средствам перманентного мониторинга достижений обучающихся в течение всего учебного года.

Входной контроль – диагностика предметных компетенций и личностных качеств обучающихся.

Текущий контроль — диагностика развития предметных компетенций обучающихся по определенному модулю.

Итоговый контроль - проводится по итогам учебного года в форме контрольной работы.

Предметные результаты выявляются путем выполнения лабораторных работ, проведения самостоятельных и контрольных работ.

Критерии оценивания лабораторных и экспериментальных работ.

Оценка «зачет» ставится в том случае, если обучающийся:

- а. выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений;
- б. самостоятельно и рационально выбрал и подготовил для опыта необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью;
- в. в представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы;
- г. правильно выполнил анализ погрешностей;
- д. соблюдал требования безопасности труда.

Или

- а. опыт проводился в условиях, не обеспечивающих достаточной точности измерений.
- б. или было допущено два-три недочета, или не более одной негрубой ошибки и одного недочета.

или

- а. опыт проводился в нерациональных условиях, что привело к получению результатов с большой погрешностью,
- б. или в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т. д.). не принципиального для данной работы характера, но повлиявших на результат выполнения. в. или не выполнен совсем или выполнен неверно анализ погрешностей; или работа выполнена не полностью, однако объем выполненной части таков, что позволяет получить правильные результаты и выводы по основным, принципиально важным задачам работы.

Оценка «незачет» ставится в том случае, если:

- а. работа выполнена не полностью; и объем выполненной части работы не позволяет сделать правильных выводов,
- б. или опыты, измерения, вычисления, наблюдения производились неправильно,
- в. когда учащийся совсем не выполнил работу или не соблюдал требовании безопасности труда.

В тех случаях, когда учащийся показал оригинальный и наиболее рациональный подход к выполнению работы и в процессе работы, но не избежал тех или иных недостатков, оценка за выполнение работы по усмотрению педагога может быть повышена по сравнению с указанными выше нормами.

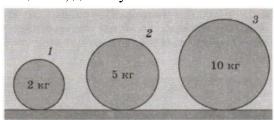
Контрольная работа (1 год обучения).

«Что лишнее?»

- 1. Скорость, время, градус, масса
- 2. Термометр, насос, весы, мензурка
- 3. Скорость, километр, килограмм, дециметр
- 4. Масса, объем, плотность, сила, площадь, скорость, время, газ, длина, давление, путь, вес
- 5. Динамометр, весы, барометр, мензурка, часы, жидкость, линейка, термометр, спилометр
- 6. Молния, радуга, движение, диффузия, молекула, падение тела, нагревание, инерция, тяготение, трение

Объясни ситуацию

- 1. Почему, спускаясь по канату, веревке, опасно быстро скользить?
- 2. Для чего нужен желтый свет светофора, который загорается после зеленого? *Задачи*.
 - 1. От дачи до станции 2 км. Вы торопитесь на поезд и можете двигаться по асфальтированной дороге со скоростью 5 км/ч. А напрямик через луг до станции 1,6 км, но вы можете двигаться со скоростью лишь 4 км/ч. Какой путь вы выберете? Обоснуйте свой ответ.
 - 2. Пешеход две трети времени своего движения шел со скоростью 3 км/ч. Оставшееся время со скоростью 6 км/ч. Определите среднюю скорость пешехода на всем пути.
 - 3. Для подъема груза массой 50 кг по наклонной плоскости высотой 40 см требуется приложить силу 50 Н. Какова длина этой плоскости, если КПД ее 80 %? Чему равна сила трения при подъеме груза?
 - 4. Сколько воды можно поднять из колодца глубиной 36 м за 1 ч, если мощность электродвигателя насоса равна 5 кВт, а КПД установки 70 %?
 - 5. Во время циркового представления слон массой 3 т поднялся на тумбу высотой 50 см, а его дрессировщика массой 80 кг подняли под самый купол на высоту пятиэтажного дома (15 м). Кто из них приобрел большую потенциальную энергию слон или дрессировщик?


Контрольная работа (2 год обучения).

- 1. Выберите основные типы теплопроводности:
- 1) Температуропроводность, конвекция, облучение;
- 2) Теплопроводность, облучение, индукция;
- 3) Теплопроводность, конвекция, излучение;
- 4) Теплоемкость, излучение, конденсирование.
- 2. Поставьте знак «>», «<» или «=» чтобы получилось верное выражение. В идеальных условиях системы теплообмен происходит таким образом, что теплота отданная полученной
- 3. Выберите два верных утверждения:
 - 1) Процессы плавления и испарения происходят с поглощением теплоты;
 - 2) Плавление и кипение обратные друг другу процессы;
 - 3) Испарение и конденсация обратные друг другу процессы;
 - 4) Процессы сгорания и кристаллизации происходят с поглощением теплоты.
- 4. Какое количество теплоты выделится при полном сгорании смеси 2,5 кг бензина и 0,5 кг спирта?
- 5. Какое количество теплоты выделится при конденсации водяного пара массой 50 г?
- 6. Чем отличаются проводники, полупроводники и диэлектрики?
- 7. Найдите ошибки в выражениях (если они есть) и исправьте их:
 - 1) Наименьшим отрицательным зарядом обладает протон;
 - 2) Частица, которая имеет нейтральный заряд называется электрон;
 - 3) Разноименные (плюс и минус) заряды притягиваются;
 - 4) Одноименные заряды притягиваются.
- 8. Анализируя формулу закона Кулона $F = k \frac{|q_1| * |q_2|}{r^2}$, напишите каким образом зависит сила взаимодействия от величины зарядов и расстояния между ними.
- 9. Заряды двух одинаковых металлических шариков равны соответственно -8q и -12q. Шарики привели в соприкосновение и раздвинули. Какой заряд будет после этого у каждого из шариков?
- 10. Нарисуйте схему соединения батарейки, двух лампочек и двух ключей, при котором включение и выключение каждой лампочки производится «своим» ключом.
- 11. Как можно в солнечный день измерить высоту дерева, не влезая на него, если вам известен ваш рост? Сделайте схематический рисунок, поясняющий ваш ответ.

Контрольная работа (3 год обучения).

- 1. Санки, скатившиеся с горы, проехали по горизонтальной поверхности 25 м, замедляя свое движение под действием силы трения 30 Н. Определите работу силы трения на горизонтальном участке траектории санок.
- 2. Трактор и лошадь вспахали одинаковые участки поля: трактор за 2 ч, а лошадь за 10 ч. Сравните мощности трактора и лошади.
- 3. При скорости 54 км/ч сила тяги двигателя автомобиля равна 800 Н. Какова мощность двигателя?
- 4. Через 25 с после начала движения спидометр автомобиля показал скорость движения 36 км/ч. С каким ускорением двигался автомобиль?
- 5. Ученик наблюдает за колебаниями двух маятников. Первый маятник за 20 с совершил 50 колебаний, а второй за 15 с 75 колебаний. Длина какого маятника больше и во сколько раз?
- 6. Каким числом зарядовым или массовым определяются химические свойства элемента?

- 7. Металлический шарик зарядили положительно. Что можно сказать о соотношении между количеством протонов и количеством электронов в этом шарике?
- 8. Вокруг ядра атома кислорода движутся 8 электронов. Сколько протонов находится в ядре атома кислорода?
- 9. Укажите, между какими двумя из трех шаров, сделанных из одного и того же вещества, действует наибольшая сила тяготения и почему.

10. Может ли тело под действием силы тяжести двигаться по окружности? Ответ обоснуйте.

Контрольная работа (4 год обучения).

- 1. Автомобиль ехал по прямой дороге 1 ч со скоростью 60 км/ч, после чего ехал со скоростью 80 км/ч.
 - а) Сколько времени ехал автомобиль со скоростью 80 км/ч, если его средняя скорость оказалась равной 70 км/ч?
 - б) Сколько времени ехал автомобиль со скоростью 80 км/ч, если его средняя скорость оказалась равной 75 км/ч?
 - в) Какое расстояние проехал автомобиль со скоростью 80 км/ч, если его средняя скорость оказалась равной 65 км/ч?
- 2. К телу массой 3 кг приложены две силы, одна из которых направлена вертикально вниз и равна 30 Н. Тело движется с постоянной скоростью, направленной вверх и равной 2 м/с.
 - а) Как направлена вторая сила и чему она равна?
 - б) Какие данные не нужны для ответа на предыдущий вопрос?
 - в) Как надо изменить вторую силу, чтобы скорость тела начала уменьшаться и пройденный им до остановки путь был равен 2 м?
- 3. Тело массой 0,5 кг брошено под углом 30° к горизонту со скоростью 20 м/с. Сопротивлением воздуха можно пренебречь.
 - а) С каким ускорением движется тело в верхней точке траектории?
 - б) Чему равна равнодействующая приложенных к телу сил в верхней точке траектории?
 - в) Через сколько времени после броска равнодействующая приложенных к телу сил будет перпендикулярна скорости тела?
- 4. Длина недеформированной пружины жёсткостью 200 Н/м равна 10 см.
 - а) Какой массы груз надо подвесить к пружине, чтобы её удлинение стало равным 2 см?
 - б) Какой массы груз надо подвесить к пружине, чтобы её длина стала в 1,5 раза больше, чем длина недеформированной пружины?
 - в) Какой будет длина пружины с грузом, масса которого найдена при ответе на предыдущий вопрос, если она движется с ускорением, равным 5 м/с2 и направленным вверх?
- 5. Автомобиль совершает поворот на горизонтальной дороге по дуге окружности радиусом 200 м. Коэффициент трения между дорогой и шинами автомобиля равен 0.5.
 - а) Как направлена равнодействующая приложенных к автомобилю сил?

- б) При какой максимально возможной скорости (в километрах в час) автомобиль может совершить поворот?
- в) Чему равен минимальный тормозной путь автомобиля на прямой дороге после поворота, который автомобиль прошёл с максимально возможной скоростью?
- 6. Первая тележка массой 200 кг едет по рельсам со скоростью 3 м/с. Навстречу ей едет с той же по модулю скоростью вторая тележка. При столкновении тележки сцепляются и движутся затем как одно тело со скоростью, равной 1 м/с, в направлении движения второй тележки до столкновения.
 - а) Чему был равен модуль импульса первой тележки до столкновения?
 - б) Масса какой тележки больше: первой или второй?
 - в) Чему равна масса второй тележки?
- 7. Вокруг некоторой звезды движутся по круговым орбитам две планеты. Масса первой планеты в 2 раза меньше, чем масса второй, а радиус орбиты первой планеты в 2 раза меньше, чем радиус орбиты второй планеты.
 - а) На какую планету действует большая сила притяжения со стороны звезды? Во сколько раз большая?
 - б) Чему равно отношение скоростей планет?
 - в) Чему равно отношение периодов обращения планет?
- 8. Первая космическая скорость для планеты радиусом 6000 км равна 6 км/с.
 - а) Чему равно ускорение свободного падения на поверхности планеты?
 - б) Чему равна масса планеты?
 - в) Чему равна средняя плотность планеты?

Литература для педагога

- 1. Варламов С. Д., Зильберман А. Р., Зинковский В. И. Экспериментальные задачи на уроках физики и физических олимпиадах. М.: МЦНМО, 2009. 184 с.: ил.
- 2. Горев Л.А. Занимательные опыты по физике в 6–7 классах. Пособие для учителей. М.: Просвещение, 1977.-152 с.
- 3. Гринченко Б. И. Как решать задачи по физике : (Шк. курс физики в задачах) / Б. Гринченко. СПб. : НПО "Мир и семья-95", 1998. 784 с. : ил.
- 4. Задачи по физике: Учеб. пособие / И. И. Воробьев, П. И. Зубков, Г. А. Кутузова и др.; Под ред. О. Я. Савченко. 3-е изд., испр. и доп. Новосибирск: Новосибирский государственный университет, 1999. 370 с., ил.
- 5. Кабардин О. Ф. Физика. Книга для учителя. 8 класс : пособие для общеобразоват. учреждений / О. Ф. Кабардин, С. И. Кабардина. М. : Просвещение, 2010. 78 с. : ил.

Литература для детей

- 1. Генденштейн Л.Э. Физика. 10 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений (базовый уровень) / Л.Э. Генденштейн, Л.А. Кририк, И.М. Гельфгат, И.Ю. Ненашев; под ред. Л.Э. Генденштейна. М. : Мнемозина, 2009.-127 с.
- 2. Генденштейн Л.Э. Физика. 7 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений / Л.Э. Генденштейн, Л.А. Кририк, И.М. Гельфгат; под ред. Л.Э. Генденштейна. 3-е изд., стер. М.: Мнемозина, 2012. 191 с.
- 3. Генденштейн Л.Э. Физика. 8 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений / Л.Э. Генденштейн, Л.А. Кририк, И.М. Гельфгат; под ред. Л.Э. Генденштейна. 3-е изд., стер. М.: Мнемозина, 2012. 191 с.
- 4. Генденштейн Л.Э. Физика. 9 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений / Л.Э. Генденштейн, Л.А. Кририк, И.М. Гельфгат, И.Ю. Ненашев; под ред. Л.Э. Генденштейна. 4-е изд., стер. М.: Мнемозина, 2012. 175 с.
- 5. Кабардин О. Ф., Орлов В.А., Пономарева А.В. Факультативный курс физики. 10 класс. Пособие для учащихся. М.: «Просвещение», 1987. 208 с.

- 6. Кирик Л.А. Физика 9 класс. Разноуровневые самостоятельные и контрольные работы. 4-е изд., перераб. М.: ИЛЕКСА, 2010. 192с.
- 7. Кириллова И.Г. Книга для чтения по физике. Учебное пособие для учащихся 6-7 класс. сред.шк. / сост И.Г. Кириллова. М.: Просвещение, 1986. 206 с.

Литература для родителей

- 1. Александр А.П. Физика на пальцах. Для детей и родителей, которые хотят объяснить детям / Александр Никонов. Москва: Издательство АСТ, 2016. 352 с.
- 2. Перельман Я.И. Занимательные задачи и опыты / Я. И. Перельман Москва: ДЕТГИЗ 1959. 528 с.

Интернет-ресурсы

- 1. Единая коллекция цифровых образовательных ресурсов. Физика. [Электронный ресурс]. Режим доступа: http://school-collection.edu.ru/collection/
- 2. Интерактивный калькулятор измерений. Перевод различных единиц измерения из одной системы в другую. Вес и масса, объем и вместимость, длина и расстояние, площадь, скорость, давление, температура, угловая мера, время, энергия и работа, мощность, компьютерные единицы. [Электронный ресурс]. Режим доступа: https://www.convert-me.com/ru/
- 3. Электронная подборка журналов по физике от издательского дома «Первое сентября». [Электронный ресурс]. Режим доступа: https://fiz.1sept.ru/